Machine Learning Engineer | Interactive Data Visualization
- Verfügbarkeit einsehen
- 0 Referenzen
- 80€/Stunde
- 71384 Weinstadt
- auf Anfrage
- de | en
- 01.06.2024
Kurzvorstellung
- Fullstack Entwicklung in der Cloud (Amazon Web Services)
- Data Analysis & Machine Learning (pandas, sklearn, tensorflow)
- Interactive Data Visualization (d3.js)
Qualifikationen
Projekt‐ & Berufserfahrung
3/2020 – 6/2020
Tätigkeitsbeschreibung
Map Matching of vehicle position data
Input: Billions of noisy vehicle telemetry data points (position, direction etc.)
Output: Vehicle trajectories matched to street
The algorithm is scheduled periodically on AWS Batch to process historic telemetry data stored on S3. I used GraphHopper Map Matching and implemented a Particle Filter that leads to matched trajectories of high quality. The quality of the processed trajectories is measured and can be monitored using AWS CloudWatch.
Technologies
AWS Batch, Lambda, S3, CloudWatch, Docker, Python, Pandas, OSM, Graphhopper
Pandas, Docker, Git, Python, Amazon Web Services (AWS)
12/2019 – 2/2020
Tätigkeitsbeschreibung
Frontend and Backend for managing models / clusters for a Fleet ML service
A UI (and Backend for the Frontend) was built to make an ML solution easy to expand to new cities and easy maintanable. The UI makes it possible to manage and extend the services for people that are not deeply involved into the technical details. A specialty about the project is the storage of the meta data (cities, clusters, POIs) via GitHub API to allow the 4-eyes principle via GitHub PRs and enable versioning and rollbacks.
Technologies
AWS ECS, S3, Docker, GitHub API, Python, ol3js, Vue.js, tailwindcss
Docker, Git, Python, Amazon Web Services (AWS), JavaScript, Vue.Js
9/2019 – 11/2019
Tätigkeitsbeschreibung
Interactive Vehicle ETA prediction visualization.
For a shuttle service 3 different estimations of arrival time (ETA) are used. To track their performance over time and by the given circumstances these ETAs were collected and compared by their actual arrival time. An interactive visualization (Backend & Frontend) was created to analyze the different ETAs.
Technologies:
data collection: AWS Lambda, S3
backend: AWS ECS, Docker, Python Flask
frontend: Vue.js, ol3js, d3.js
Docker, Git, Python, Amazon Web Services (AWS), JavaScript, Vue.Js
10/2015 – 8/2019
TätigkeitsbeschreibungAfter our company (ROOMAPS) and team was acquired by moovel Group we started to migrate our Indoor Navigation Stack to the moovel Maps technologies. Also we further extended our technologies to indoor mapping via Tango devices and 3D rendering of buildings. In July 2016 I started my journey as a Machine Learning Engineer in the Data Science Team building projects like Bus Delay Prediction, Demand Prediction for Shuttle services and intelligent relocation of shuttles based on estimated demands.
Eingesetzte QualifikationenMaschinelles Lernen, Pandas, Tensorflow, Docker, Git, Python, Amazon Web Services (AWS), Angular, JavaScript
6/2012 – 5/2015
Tätigkeitsbeschreibung
Co-Founder of ROOMAPS as an innovative indoor navigation & information system for smartphones with individual map-design and modern technology for positioning indoors.
The core of the ROOMAPS technology consisted of:
Map Import & Rendering. Import map features based on AutoCAD files and store as PostGIS geometries. The tile server renders the tiles on-the-fly when requested. Served through AWS CloudFront they are cached for the next requests. For rendering the Java Topology Suite and GeoTools have been used.
Navigation Mesh Building & Routing. Based on the walkable area a navigation mesh (a graph which consist of convex connected Polygons) is created automatically. This is used for the A* routing algorithm to find shortest pathes.
Indoorpositioning. An extensible approach of a particle filter and Map Matching based on Navigation Meshs was used to get the positioning of a smartphone. Depending on the environment all the available information a smartphone can gather was fed into the algorithm to improve its accuracy: Acceleration, Gyro, Magnetic Field, Bluetooth, WiFi, Barometers.
Postgresql, Android Entwicklung, Docker, Git, Amazon Web Services (AWS), AngularJS
Zertifikate
Ausbildung
Stuttgart
Über mich
Seit meiner Schulzeit liebe ich die Entwicklung von Webanwendungen. Heute bin ich mehr denn je davon begeistert, wie Technologie Dinge ermöglicht, die vor weniger Zeit undenkbar waren.
Meine aktuellen Schwerpunkte:
- Fullstack Entwicklung in der Cloud (Amazon Web Services)
- Data Collection (Public Data, Spatial Data, Site Scraping, API scraping)
- Machine Learning (XGBoost, scikit-learn, PyTorch, Tensorflow)
- Interactive Data Visualization (d3.js)
Haben Sie spannende Projektideen und wollen diese schnell und kompetent umsetzen?
Dann kontaktieren Sie mich für ein unverbindliches Beratungsgespräch.
Weitere Kenntnisse
Data: Pandas, NumPy, Scraping (scrapy, beautifulsoup), Spark
Machine Learning: scikit-learn, PyTorch, Tensorflow, xgboost, CatBoost
Backend: REST APIs, Docker, Git, SQL, Python, Node.js, Java
Frontend: Javascript, React, Vue, Angular, d3
Persönliche Daten
- Deutsch (Muttersprache)
- Englisch (Fließend)
Kontaktdaten
Nur registrierte PREMIUM-Mitglieder von freelance.de können Kontaktdaten einsehen.
Jetzt Mitglied werden